Oxidation: Der Dreh mit dem Spin
Quantenmechanik bestimmt Reaktion von Sauerstoff mit Metallen
Reaktionen mit Sauerstoff gehören zu den wichtigsten chemischen Prozessen. Nützlich sind sie, wenn Nahrung in Körperzellen oder Erdgas in Kraftwerken kontrolliert zu Kohlendioxid verbrannt wird, um Energie zu gewinnen. Ökologisch problematisch kann es werden, wenn sich mit Luftsauerstoff Ozon oder Stickoxide bilden. Besondere wirtschaftliche und technische Bedeutung hat die sauerstoffabhängige Korrosion von Eisen, der Rost. Obwohl sie so verbreitet ist, weiß man über die atomaren Abläufe bei der Oxidation mit Sauerstoff recht wenig. Licht ins Dunkel bringt nun eine Arbeit von Forschern des Karlsruher Instituts für Technologie (KIT), die in der Fachzeitschrift „Science“ erschienen ist.
Die Veröffentlichung der Chemiker Professor Hansgeorg Schnöckel und Dr. Ralf Burgert zeigt, dass der Spin, also der Drehimpuls der Elektronen, die für die Bindung zwischen den Atomen verantwortlich sind, bei der Korrosion von Metallen entscheidend ist (Science, 319 (5862), 438). Als Modellsystem stellten die Wissenschaftler Nanopartikel aus wenigen Aluminiumatomen her. Für die Untersuchung dieser als Cluster bezeichneten Strukturen nutzten sie die Fourier-Transform-Massenspektrometrie, ein Verfahren, das bisher vor allem bei der Analyse von Proteinen eingesetzt wurde.
In Zusammenarbeit mit amerikanischen Wissenschaftlern aus Baltimore, Lake Charles und Richmond sowie Forschern an der Universität Konstanz konnten die Chemiker nachweisen, dass der Spin bestimmt, ob es zu einer spontanen Oxidation kommt oder nicht. Entscheidend ist, dass die Spins bei beiden Reaktionspartnern zueinander passen, denn nach den „Spin-Auswahlregeln“ sind nur bestimmte Kombinationen möglich.
„Eigentlich müsste um uns herum alles brennen, denn unsere Luft enthält 20 Prozent Sauerstoff“, erläutert Schnöckel, der am Centrum für Funktionelle Nanostrukturen des KIT arbeitet. „Zum Glück existiert Sauerstoff in unterschiedlichen quantenmechanischen Formen. Aufgrund der Elektronenzustände hat er als Triplett-Sauerstoff, also in seiner ‚Normalform’, die niedrigste Energie und magnetische Eigenschaften. Nur durch die Zufuhr von Energie, etwa durch UV-Strahlung in den oberen Schichten der Atmosphäre oder durch chemische Reaktionen im Labor, entsteht Singulett-Sauerstoff. Er ist nicht magnetisch und aufgrund seiner höheren Energie sehr instabil.“ Schnöckels Team konnte nachweisen, dass nur diese Form spontan, ohne Energiezufuhr, einen hoch stabilen Cluster aus 13 Aluminiumatomen (Al13) oxidiert. Hierfür fingen sie negativ geladene Al13-Cluster im Magnetfeld eines Massenspektrometers auf einer Kreisbahn ein. Durch elektrische Entladungen produzierten sie Singulett-Sauerstoff, der im Hochvakuum des Geräts über längere Zeit stabil ist. Da die Reaktionspartner nur in geringer Konzentration vorliegen, trifft ein Molekül nur etwa alle zehn Sekunden auf einen Aluminium-Cluster – genug Zeit, um den schnellen ersten Reaktionsschritt der Oxidation zu messen. Im gleichen Experiment reagierte ein Cluster mit 14 Aluminiumatomen, der selbst wie ein winziger Magnet wirkt, nicht mit Singulett-, sondern mit Triplett-Sauerstoff.
Bisher hat das Team ausschließlich kleine Aluminium-Cluster untersucht. Ihre regelmäßige Struktur mache sie zu idealen Versuchsobjekten, so Schnöckel. „Vereinfacht gesagt verhalten sich Al13-Cluster wie Aluminium-Metall.“ Seine Untersuchungen und Methoden können aber auch auf andere Reaktionen mit Sauerstoff, wie sie etwa bei Verbrennungsvorgängen oder bei der Zersetzung von Kunststoffen auftreten, übertragen werden, um sie besser zu verstehen und kontrollieren zu können.
Literatur:
Spin Conservation Accounts for Aluminum Cluster Anion Reactivity Pattern with O2. R. Burgert et al., Science 319 (5862), 438-442 (2008).
A negatively charged Al13 cluster with its stable electron structure does only slowly react with an oxygen molecule in the triplet state (red). Due to the rotation direction of its electrons (spin), the molecule behaves like a small magnet and shows restricted reactivity. The electron spin of the non-magnetic singlet oxygen molecule (red) allows for rapid bonding to the negatively charged Al13 ion. In an intermediate step, the cluster is deformed. In the end of the oxidation reaction, it decomposes into two molecules of aluminum oxide and an unstable Al9 ion.